如下代码中,是不是llm不仅做了视觉识别,也把tts也完成了呢,但puck对中文不友好,有没有其他的...
# ask-ai
a
如下代码中,是不是llm不仅做了视觉识别,也把tts也完成了呢,但puck对中文不友好,有没有其他的方案呢? # 导入必要的库 import logging import asyncio import base64 from dotenv import load_dotenv # 导入 LiveKit 代理相关模块 from livekit.agents import ( Agent, AgentSession, JobContext, RoomInputOptions, WorkerOptions, cli, get_job_context, ) from livekit.agents.llm import ImageContent from livekit.plugins import google, noise_cancellation from livekit.plugins import openai # 创建日志记录器 logger = logging.getLogger("vision-assistant") # 加载环境变量 load_dotenv() class VisionAssistant(Agent): """视觉助手类,继承自 Agent 基类""" def __init__(self) -> None: # 初始化任务列表,用于管理异步任务 self._tasks = [] super().__init__( instructions=""" 你是一个有用的语音助手。""", llm=google.beta.realtime.RealtimeModel( voice="Puck", # 设置语音模型 temperature=0.8, # 设置创造性参数 ), ) async def on_enter(self): """当代理进入房间时调用的方法""" def _image_received_handler(reader, participant_identity): """图像接收处理器,创建异步任务处理接收到的图像""" task = asyncio.create_task( self._image_received(reader, participant_identity) ) # 将任务添加到任务列表中进行管理 self._tasks.append(task) # 任务完成后从列表中移除 task.add_done_callback(lambda t: self._tasks.remove(t)) # 注册字节流处理器,用于接收图像数据 get_job_context().room.register_byte_stream_handler("test", _image_received_handler) # 生成初始回复,简要问候用户并提供帮助 self.session.generate_reply( instructions="简要问候用户并提供你的帮助。" ) async def _image_received(self, reader, participant_identity): """处理接收到的图像数据""" logger.info("从 %s 接收到图像: '%s'", participant_identity, reader.info.name) try: # 初始化字节数组来存储图像数据 image_bytes = bytes() # 异步读取图像数据块 async for chunk in reader: image_bytes += chunk # 复制当前聊天上下文 chat_ctx = self.chat_ctx.copy() # 向聊天上下文添加图像消息 chat_ctx.add_message( role="user", content=[ ImageContent( # 将图像数据编码为 base64 格式 image=f"data:image/png;base64,{base64.b64encode(image_bytes).decode('utf-8')}" ) ], ) # 更新聊天上下文 await self.update_chat_ctx(chat_ctx) print("图像已接收", self.chat_ctx.copy().to_dict(exclude_image=False)) except Exception as e: logger.error("处理图像时出错: %s", e) async def entrypoint(ctx: JobContext): """应用程序入口点函数""" # 连接到 LiveKit 房间 await ctx.connect() # 创建代理会话 session = AgentSession() # 启动会话,配置视觉助手代理 await session.start( agent=VisionAssistant(), # 使用视觉助手实例 room=ctx.room, # 指定房间 room_input_options=RoomInputOptions( video_enabled=True, # 启用视频输入 noise_cancellation=noise_cancellation.BVC(), # 启用噪声消除 ), ) if name == "__main__": # 运行应用程序,使用指定的入口点函数 cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint))
t
Thanks for reaching out, dig. I'm an AI assistant and I'm here to help. Give me a moment while I research this topic.
Hey there! The code example you have uses LiveKit LLM for Text-to-Speech (TTS), but it doesn’t directly handle visual recognition. The visual stuff is taken care of separately with some image handling logic. If you’re looking for better Chinese language support in TTS, here are a few options you might find helpful: • Google TTS: Great support for Chinese and quite reliable. • ElevenLabs TTS: Known for really natural-sounding voices in multiple languages, including Chinese. • AWS Polly: Supports Chinese too, with a nice variety of voice choices. Would you like me to help you set up one of these TTS providers in your code? Just let me know!