why am i getting this error : {"message": "Running...
# ask-ai
m
why am i getting this error : {"message": "Running <Task finished name='Task-1204' coro=<_execute_tools_task.<locals>._traceable_fnc_tool() done, defined at C\\Users\\YUSUF\\miniconda3\\envs\\newagents\\lib\\site packages\\opentelemetry\\util\\ decorator.py68> result=None> took too long: 11.08 seconds", "level": "WARNING", "name": "livekit.agents", "timestamp": "2025-08-06T121102.556952+00:00"} C\Users\YUSUF\miniconda3\envs\newagents\lib\site packages\livekit\agents\llm\utils.py410: PydanticDeprecatedSince211: Accessing the 'model_fields' attribute on the instance is deprecated. Instead, you should access this attribute from the model class. Deprecated in Pydantic V2.11 to be removed in V3.0. for name, field in model.model_fields.items(): {"message": "Email sent successfully to Yusuf.nfts@gmail.com", "level": "INFO", "name": "root", "room": "sbx-ptrecs-8mWBF6pK6xW5LiCq97UhhF", "user_id": "nano_user", "timestamp": "2025-08-06T121208.557185+00:00"} {"message": "Running <Task finished name='Task-1397' coro=<_execute_tools_task.<locals>._traceable_fnc_tool() done, defined at C\\Users\\YUSUF\\miniconda3\\envs\\newagents\\lib\\site packages\\opentelemetry\\util\\ decorator.py68> result=None> took too long: 3.56 seconds", "level": "WARNING", "name": "livekit.agents", "timestamp": "2025-08-06T121208.558444+00:00"} {"message": "Running <Handle BaseProactorEventLoop._loop_self_reading(<_OverlappedF...esult=b'\\x00'>)> took too long: 3761.23 seconds", "level": "WARNING", "name": "livekit.agents", "timestamp": "2025-08-06T131452.769546+00:00"} {"message": "livekit:rtc engine453livekit:rtc_engine - received session close: \"signal client closed: \\\"ping timeout\\\"\" UnknownReason Resume", "level": "WARNING", "name": "livekit", "timestamp": "2025-08-06T131452.780545+00:00"} {"message": "livekit:rtc engine729livekit:rtc_engine - resuming connection... attempt: 0", "level": "ERROR", "name": "livekit", "timestamp": "2025-08-06T131452.859849+00:00"} {"message": "inference is slower than realtime", "level": "WARNING", "name": "livekit.plugins.silero", "room": "sbx-ptrecs-8mWBF6pK6xW5LiCq97UhhF", "user_id": "nano_user", "delay": 0.7852448000004806, "timestamp": "2025-08-06T131453.633756+00:00"} {"message": "inference is slower than realtime", "level": "WARNING", "name": "livekit.plugins.silero", "room": "sbx-ptrecs-8mWBF6pK6xW5LiCq97UhhF", "user_id": "nano_user", "delay": 1.3234341000017302, "timestamp": "2025-08-06T131454.254675+00:00"} {"message": "inference is slower than realtime", "level": "WARNING", "name": "livekit.plugins.silero", "room": "sbx-ptrecs-8mWBF6pK6xW5LiCq97UhhF", "user_id": "nano_user", "delay": 1.2950024000004632, "timestamp": "2025-08-06T131454.527334+00:00"} and hte agent sudden;y stopep talking. this is the code : class Assistant(Agent): def __init__(self) -> None: super().__init__( instructions=AGENT_INSTRUCTION, tools=[ get_weather, search_web, send_email ], ) def prewarm(proc: JobProcess): proc.userdata["vad"] = silero.VAD.load() async def entrypoint(ctx: agents.JobContext): ctx.log_context_fields = { "room": ctx.room.name, "user_id": "nano_user", } await ctx.connect() logger.info("Connected to Nano AI room") # Ensure 'vad' is prewarmed session = AgentSession( vad=ctx.proc.userdata["vad"], llm=openai.LLM(model="gpt-4.1-mini"), stt=openai.STT(), tts=openai.TTS(), allow_interruptions=True ) agent = Assistant() try: await session.start( room=ctx.room, agent=agent, room_input_options=RoomInputOptions(text_enabled=True, video_enabled=True , audio_enabled=True), room_output_options=RoomOutputOptions(transcription_enabled=True, audio_enabled=True) ) logger.info("Nano AI session started successfully") except Exception as e: logger.error(f"Failed to start Nano AI session: {str(e)}", exc_info=True) raise await session.say("Hi, my name is Nano, built by Yusuf. How may I help you?", allow_interruptions=True) if name == "__main__": cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint, prewarm_fnc=prewarm))
t
Thanks for reaching out, Anigilaje. I'm an AI assistant and I'm here to help. Give me a moment while I research this topic.
The error indicates that some tasks in your LiveKit agent are taking longer than expected to complete, which can disrupt the agent's performance. Here are some steps to address this: 1. Implement Timeout Handling: Set timeouts for long-running operations, such as RPC calls, to prevent indefinite delays. Handle exceptions like
RpcError
for cases like
RESPONSE_TIMEOUT
. 2. Monitor Task Execution: Use tools like
hook_slow_callbacks
to log warnings for tasks exceeding a specific duration. This helps identify bottlenecks. 3. Provide User Feedback: Inform users about delays using verbal updates through the agent's speech functionality. 4. Optimize Code: Review and optimize your code for bottlenecks, such as heavy computations or slow API calls. Ensure your environment has sufficient CPU and memory resources. 5. Offload Tasks: For recurring long-running tasks, consider offloading them to separate workers or services to avoid blocking the main application. 6. Retry Mechanisms: Implement retries for failed tasks to recover from transient issues. These steps should help mitigate the issue and improve the agent's responsiveness. Let me know if you need further assistance with any specific step. Sources: livekit-agents/livekit/agents/worker.py | Handling RAG Delays in Voice Agents | LiveKit Docs | External data and RAG | LiveKit Docs | An open source stack for real-time multimodal AI | An open source stack for real-time multimodal AI