boundless-truck-87206
07/27/2025, 1:21 PMtall-airline-16756
07/27/2025, 1:22 PMtall-airline-16756
07/27/2025, 1:23 PMend_turn
method is called, you can use manual turn detection. This approach gives you full control over when audio is captured and processed. Below are the steps to achieve this:
1. Set Manual Turn Detection Configure your AgentSession
with manual turn detection:
session = AgentSession(
turn_detection="manual",
stt=agent_config.get_stt_service(),
llm=agent_config.get_llm_service(),
tts=agent_config.get_tts_service(),
)
2. Disable Audio Input Initially Start with audio input disabled to prevent STT from processing audio automatically:
session.input.set_audio_enabled(False)
3. Implement RPC Methods for Turn Control Set up RPC methods to control when audio capture starts and when STT processing occurs:
@ctx.room.local_participant.register_rpc_method("start_turn")
async def start_turn(data: rtc.RpcInvocationData):
session.interrupt() # Stop any current agent speech
session.clear_user_turn() # Clear any previous input
session.input.set_audio_enabled(True) # Start listening
@ctx.room.local_participant.register_rpc_method("end_turn")
async def end_turn(data: rtc.RpcInvocationData):
session.input.set_audio_enabled(False) # Stop listening
session.commit_user_turn(transcript_timeout=10.0) # Process the input
The transcript_timeout
parameter ensures the system waits for the final transcript before processing.
4. Optional: Add a Cancel Method You can also implement a method to discard audio without processing:
@ctx.room.local_participant.register_rpc_method("cancel_turn")
async def cancel_turn(data: rtc.RpcInvocationData):
session.input.set_audio_enabled(False) # Stop listening
session.clear_user_turn() # Discard the input
Pros and Cons of This Approach
Pros:
• Full control over when STT processes audio.
• Avoids unnecessary processing during user pauses or background noise.
• Allows integration with custom logic for turn detection.
Cons:
• Requires additional implementation effort.
• May introduce slight delays if not managed efficiently.
This setup ensures that STT only processes spoken words when you explicitly call the end_turn
RPC method, providing precise control over speech-to-text conversion.
Sources: Turn detection and interruptions | LiveKit Docs | Turn detection and interruptions | LiveKit Docs | examples/voice_agents/push_to_talk.pyboundless-truck-87206
07/27/2025, 1:32 PMtall-airline-16756
07/27/2025, 1:33 PMpython from livekit.plugins import openai, silero # Create VAD vad = silero.VAD.load( min_speech_duration=0.1, min_silence_duration=0.5, ) # Create agent with VAD agent = Agent( instructions="Your agent instructions", stt=openai.STT(), # Non-streaming STT vad=vad, # VAD for handling non-streaming STT # ... other configurations )
### Solution 2: Use a StreamAdapter If VAD isn't your thing, no problem! We can use a StreamAdapter
to handle audio buffering. It's like giving your STT a smart assistant that manages the audio flow: python from livekit import agents from livekit.plugins import openai, silero # Create STT and VAD whisper_stt = openai.STT() vad = silero.VAD.load( min_speech_duration=0.1, min_silence_duration=0.5, ) # Wrap STT in StreamAdapter stt = agents.stt.StreamAdapter(whisper_stt, vad.stream())
### Solution 3: Use a Streaming-Capable STT Want an even simpler solution? Just switch to an STT provider that's already streaming-friendly, like Deepgram. It's like upgrading to a more flexible communication tool! ### Why This Happens Here's the scoop: your system noticed that the current STT provider doesn't support streaming, and there's no VAD to help manage the audio. It's basically saying, "Hey, I need a bit more help to process this audio smoothly!" Need more help? I'm all ears! Just reach out, and we'll get this sorted together. 😊 Sources: Speech-to-text (STT) integrations | LiveKit Docs | livekit-plugins/livekit-plugins-spitch/livekit/plugins/spitch/stt.py