rich-monitor-70665
05/15/2025, 2:05 PMtall-airline-16756
05/15/2025, 2:06 PMtall-airline-16756
05/15/2025, 2:06 PMServerVadOptions
remains the same. It is defined as follows:
@dataclass
class ServerVadOptions:
threshold: float
prefix_padding_ms: int
silence_duration_ms: int
create_response: bool = True
This class is used for server-side Voice Activity Detection (VAD) settings and can be passed to the turn_detection
parameter when configuring a LiveKit agent. Additionally, the SDK offers an alternative SemanticVadOptions
class for semantic-based voice activity detection.
Sources: livekit.plugins.openai.realtime API documentationrich-monitor-70665
05/15/2025, 2:20 PMtall-airline-16756
05/15/2025, 2:20 PMTurnDetection
in the LiveKit SDK, you can use one of the following options depending on the model you want to use:
1. For the English model: from livekit.plugins.turn_detector.english import EnglishModel
2. For the multilingual model: from livekit.plugins.turn_detector.multilingual import MultilingualModel
After importing, you can initialize the agent session with the turn detector like this:
session = AgentSession(
...
turn_detection=EnglishModel(),
# or for multilingual model:
# turn_detection=MultilingualModel(),
)
Sources: Turn detection and interruptions | LiveKit Docs | Tree View: | dse-workbenchrich-monitor-70665
05/15/2025, 2:21 PMtall-airline-16756
05/15/2025, 2:21 PMTurnDetection
class and create an instance in the LiveKit SDK, you can use the following options depending on the model you need:
For Python:
# For English model
from livekit.plugins.turn_detector.english import EnglishModel
# For multilingual model
from livekit.plugins.turn_detector.multilingual import MultilingualModel
You can then create an instance like this:
turn_detection = EnglishModel()
# or for multilingual:
turn_detection = MultilingualModel()
For JavaScript:
// Import EOUModel from the turnDetector module
import { turnDetector } from '@livekit/agents-plugin-silero';
const { EOUModel } = turnDetector;
// Create an instance
const turnDetection = new EOUModel({ unlikelyThreshold: 0.15 });
Let me know if you need further assistance!
Sources: Turn detection and interruptions | LiveKit Docs | EOUModel | LiveKit Agentsrich-monitor-70665
05/15/2025, 2:24 PMtall-airline-16756
05/15/2025, 2:24 PMAgentSession
with the "manual"
turn detection option and control turns programmatically. Here's an example:
session = AgentSession(
# other configurations...
turn_detection="manual",
)
With manual turn detection, you can control when turns start and end using methods like:
• session.interrupt()
- Interrupts the agent's speech and switches to listening mode
• session.input.set_audio_enabled(True/False)
- Enables or disables audio input
• session.generate_reply()
- Generates a response after a user turn ends
This is particularly useful for implementing push-to-talk functionality. Here's an example using RPC calls:
@ctx.room.local_participant.register_rpc_method("start_turn")
async def start_turn(data: rtc.RpcInvocationData):
session.interrupt()
# listen to the caller if multi-user
room_io.set_participant(data.caller_identity)
session.input.set_audio_enabled(True)
@ctx.room.local_participant.register_rpc_method("end_turn")
async def end_turn(data: rtc.RpcInvocationData):
session.input.set_audio_enabled(False)
session.generate_reply()
Let me know if you need further assistance!
Sources: Turn detection and interruptions | LiveKit Docs | Turn detection and interruptions | LiveKit Docsrich-monitor-70665
05/15/2025, 2:33 PMtall-airline-16756
05/15/2025, 2:34 PMturn_detection
in RealtimeModel
are:
1. Server VAD (default): Uses periods of silence to automatically chunk the audio. Example configuration: turn_detection=TurnDetection(
type="server_vad",
threshold=0.5,
prefix_padding_ms=300,
silence_duration_ms=500,
create_response=True,
interrupt_response=True,
)
2. Semantic VAD: Uses a semantic classifier to detect when the user has finished speaking based on their words. Example configuration: turn_detection=TurnDetection(
type="semantic_vad",
eagerness="medium",
create_response=True,
interrupt_response=True,
)
These options are specifically for the OpenAI Realtime API integration with LiveKit Agents. Let me know if you need further clarification!
Sources: OpenAI Realtime API integration guide | LiveKit Docs | Turn detection and interruptions | LiveKit Docs