what is the equivalent of this in the new livekit ...
# ask-ai
r
what is the equivalent of this in the new livekit sdk version if participant_data.get("turn_detection"): turn_detection_json = json.loads(participant_data.get("turn_detection")) turn_detection = openai.realtime.ServerVadOptions( threshold=turn_detection_json.get("threshold", 0.5), prefix_padding_ms=turn_detection_json.get("prefix_padding_ms", 200), silence_duration_ms=turn_detection_json.get("silence_duration_ms", 300), ) else: turn_detection = openai.realtime.DEFAULT_SERVER_VAD_OPTIONS
t
Thanks for reaching out, simo.dev. I'm an AI assistant and I'm here to help. Give me a moment while I research this topic.
In the new LiveKit SDK version, the equivalent of
ServerVadOptions
remains the same. It is defined as follows:
Copy code
@dataclass
class ServerVadOptions:
    threshold: float
    prefix_padding_ms: int
    silence_duration_ms: int
    create_response: bool = True
This class is used for server-side Voice Activity Detection (VAD) settings and can be passed to the
turn_detection
parameter when configuring a LiveKit agent. Additionally, the SDK offers an alternative
SemanticVadOptions
class for semantic-based voice activity detection. Sources: livekit.plugins.openai.realtime API documentation
r
fix this from openai.types.beta.assistant import TurnDetection in forget how to import TurnDetection
t
To import
TurnDetection
in the LiveKit SDK, you can use one of the following options depending on the model you want to use: 1. For the English model:
from livekit.plugins.turn_detector.english import EnglishModel
2. For the multilingual model:
from livekit.plugins.turn_detector.multilingual import MultilingualModel
After importing, you can initialize the agent session with the turn detector like this:
Copy code
session = AgentSession(
    ...
    turn_detection=EnglishModel(),
    # or for multilingual model:
    # turn_detection=MultilingualModel(),
)
Sources: Turn detection and interruptions | LiveKit Docs | Tree View: | dse-workbench
r
i mean TurnDetection class so i can create instance
t
To import the
TurnDetection
class and create an instance in the LiveKit SDK, you can use the following options depending on the model you need: For Python:
Copy code
# For English model
from livekit.plugins.turn_detector.english import EnglishModel

# For multilingual model
from livekit.plugins.turn_detector.multilingual import MultilingualModel
You can then create an instance like this:
Copy code
turn_detection = EnglishModel()
# or for multilingual:
turn_detection = MultilingualModel()
For JavaScript:
Copy code
// Import EOUModel from the turnDetector module
import { turnDetector } from '@livekit/agents-plugin-silero';
const { EOUModel } = turnDetector;

// Create an instance
const turnDetection = new EOUModel({ unlikelyThreshold: 0.15 });
Let me know if you need further assistance! Sources: Turn detection and interruptions | LiveKit Docs | EOUModel | LiveKit Agents
r
i want to manually create turn detection config in python3 sdk
t
To manually create a turn detection configuration in the Python3 LiveKit SDK, you can set up the
AgentSession
with the
"manual"
turn detection option and control turns programmatically. Here's an example:
Copy code
session = AgentSession(
    # other configurations...
    turn_detection="manual",
)
With manual turn detection, you can control when turns start and end using methods like: •
session.interrupt()
- Interrupts the agent's speech and switches to listening mode •
session.input.set_audio_enabled(True/False)
- Enables or disables audio input •
session.generate_reply()
- Generates a response after a user turn ends This is particularly useful for implementing push-to-talk functionality. Here's an example using RPC calls:
Copy code
@ctx.room.local_participant.register_rpc_method("start_turn")
async def start_turn(data: rtc.RpcInvocationData):
    session.interrupt()
    
    # listen to the caller if multi-user
    room_io.set_participant(data.caller_identity)
    session.input.set_audio_enabled(True)

@ctx.room.local_participant.register_rpc_method("end_turn")
async def end_turn(data: rtc.RpcInvocationData):
    session.input.set_audio_enabled(False)
    session.generate_reply()
Let me know if you need further assistance! Sources: Turn detection and interruptions | LiveKit Docs | Turn detection and interruptions | LiveKit Docs
r
what is the possible values of turn_detection in llm=openai.realtime.RealtimeModel( api_key=OPENAI_API_KEY, temperature=self.get_generated_session_config().temperature, turn_detection=self.get_generated_session_config().turn_detection,
t
The possible values for
turn_detection
in
RealtimeModel
are: 1. Server VAD (default): Uses periods of silence to automatically chunk the audio. Example configuration:
Copy code
turn_detection=TurnDetection(
  type="server_vad",
  threshold=0.5,
  prefix_padding_ms=300,
  silence_duration_ms=500,
  create_response=True,
  interrupt_response=True,
)
2. Semantic VAD: Uses a semantic classifier to detect when the user has finished speaking based on their words. Example configuration:
Copy code
turn_detection=TurnDetection(
  type="semantic_vad",
  eagerness="medium",
  create_response=True,
  interrupt_response=True,
)
These options are specifically for the OpenAI Realtime API integration with LiveKit Agents. Let me know if you need further clarification! Sources: OpenAI Realtime API integration guide | LiveKit Docs | Turn detection and interruptions | LiveKit Docs