Tom Barber
03/15/2024, 4:34 PMmaterializers = [
to.spark(dependencies=["generate_customers"], id="custs_to_df", table_name=f"input.customers_{random_string}", spark=spark, combine=base.PandasDataFrameResult()),
to.spark(dependencies=["generate_accounts"], id="accounts_to_df", table_name=f"input.accounts_{random_string}", spark=spark, combine=base.PandasDataFrameResult()),
to.spark(dependencies=["generate_transactions"], id="transactions_to_df", table_name=f"input.transactions_{random_string}", spark=spark, combine=base.PandasDataFrameResult()),
to.spark(dependencies=["generate_aml"], id="aml_to_df", table_name=f"input.aml_{random_string}", spark=spark, combine=base.PandasDataFrameResult()),
to.spark(dependencies=["generate_entity_link_table"], id="entity_links_to_df", table_name=f"input.entity_links_{random_string}", spark=spark, combine=base.PandasDataFrameResult()),
to.spark(dependencies=["generate_entity_table"], id="entities_to_df", table_name=f"input.entities_{random_string}", spark=spark, combine=base.PandasDataFrameResult()),
]
I'd like to do something like this. But then the generate_transactions dependency depends on the generate_accounts block and the entity_link also depends on accounts and customers for example.