numerous-account-62719
03/03/2023, 4:33 AMnumerous-account-62719
03/03/2023, 4:37 AMhundreds-photographer-13496
03/03/2023, 6:28 AMnumerous-account-62719
03/03/2023, 7:12 AMnumerous-account-62719
03/03/2023, 7:12 AMhundreds-photographer-13496
03/03/2023, 7:25 AMnumerous-account-62719
03/03/2023, 7:30 AMnumerous-account-62719
03/06/2023, 5:54 AMhundreds-photographer-13496
03/06/2023, 7:13 AM# Create an emitter to the GMS REST API.
emitter = DatahubRestEmitter("<http://localhost:8080>")
# Emit metadata!
emitter.emit_mcp(datajob_input_output_mcp)
numerous-account-62719
03/06/2023, 8:04 AMhundreds-photographer-13496
03/06/2023, 8:22 AMnumerous-account-62719
03/06/2023, 10:12 AMnumerous-account-62719
03/06/2023, 10:13 AMhundreds-photographer-13496
03/06/2023, 10:36 AMnumerous-account-62719
03/06/2023, 10:47 AMnumerous-account-62719
03/06/2023, 10:49 AMhundreds-photographer-13496
03/07/2023, 6:50 AMturn_off_expensive_profiling_metrics: True
to disable some profiles (quantiles, etc). If you are using Bigquery or snowflake source, you can also disable profiling for large tables using profile_table_row_limit
, profile_table_size_limit
configurations. These sources also support smart profiling mode where one can only profile tables that haven't been updated since last profiling time using store_last_profiling_timestamps
and stateful_ingestion
enabled. Refer "Config Details" section from Bigquery source - https://datahubproject.io/docs/generated/ingestion/sources/bigquery/ to know more about these configurations,
2. This is not possible at the moment. Would be great if you would like to contribute this support.numerous-account-62719
03/07/2023, 7:14 AMnumerous-account-62719
03/07/2023, 7:14 AMhundreds-photographer-13496
03/07/2023, 9:18 AM