Slackbot
12/22/2022, 6:44 PMGregory Morris
12/22/2022, 6:44 PMGregory Morris
12/22/2022, 6:45 PMGregory Morris
12/22/2022, 6:50 PMimport bentoml
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from catboost import CatBoostClassifier
import numpy as np
import pandas as pd
# model Selection
model = XGBClassifier(random_state=10)
# Preprocessing
df_train = pd.read_csv('lc_clean.csv')
df_full_train, df_test_small = train_test_split(df, test_size=0.1, random_state=1)
# df_test_small see lc_test.csv
df_full_train = df_full_train.reset_index(drop=True)
y_full_train = df_full_train.loan_status.values
del df_full_train['loan_status']
train_full_dict = <http://df_full_train.to|df_full_train.to>_dict(orient='records')
dv = DictVectorizer(sparse=False)
x_full_train = dv.fit_transform(train_full_dict)
# train model
model.fit(x_full_train, y_full_train)
# save model with bentoml
bentoml.sklearn.save_model('loan_approval', final_model,
custom_objects={
'dicVectorizer': dv
},
signatures = {"predict_proba": {"batchable": False}}
)
Gregory Morris
12/22/2022, 7:00 PMSarthak Verma
12/23/2022, 3:26 AM