여형철
11/24/2022, 3:03 AMBo
11/24/2022, 3:08 AM여형철
11/24/2022, 3:10 AM여형철
11/24/2022, 3:11 AMI installed minio, but the status of yatai-minio-ss-0 to 4 in the k8s pod is Pending
Any solution?
SoungRyoul Kim
11/25/2022, 8:06 AMkubectl logs -n yatai-system pod/yatai-mino~~~~
SoungRyoul Kim
11/25/2022, 8:11 AMSoungRyoul Kim
11/25/2022, 8:15 AMhelm list -n yatai-system # yatai-minio # 차트명 확인
helm delete minio-operator -n yatai-system # yatai-minio # 삭제
helm upgrade --install minio-operator minio/minio-operator -n yatai-system --set tenants=null # 재배포
kubectl -n yatai-system wait --for=condition=ready --timeout=600s pod -l <http://app.kubernetes.io/name=minio-operator|app.kubernetes.io/name=minio-operator> # 배포 대기
# Tenant apply
cat <<EOF | kubectl apply -f -
apiVersion: <http://minio.min.io/v2|minio.min.io/v2>
kind: Tenant
metadata:
labels:
app: yatai-minio
name: yatai-minio
namespace: yatai-system
spec:
credsSecret:
name: yatai-minio
image: <http://quay.io/bentoml/minio-minio:RELEASE.2021-10-06T23-36-31Z|quay.io/bentoml/minio-minio:RELEASE.2021-10-06T23-36-31Z>
imagePullPolicy: IfNotPresent
mountPath: /export
podManagementPolicy: Parallel
pools:
- servers: 4
volumeClaimTemplate:
metadata:
name: data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi
volumesPerServer: 4
requestAutoCert: false
s3:
bucketDNS: false
subPath: /data
EOF
Slackbot
11/25/2022, 9:08 AM여형철
01/04/2023, 6:18 AM여형철
01/04/2023, 6:18 AM여형철
01/04/2023, 6:18 AM여형철
01/04/2023, 6:19 AMSoungRyoul Kim
01/07/2023, 3:55 AMSlackbot
01/09/2023, 2:46 AMJunyeong Choi
01/12/2023, 6:06 AMJunyeong Choi
01/12/2023, 6:11 AMnumpy==1.23.*
requests==2.28.*
bentoml==1.0.10
torch==1.12.*
torchvision==0.13.*
pydantic==1.10.*
sentry-sdk==1.11.*
service.py
class ImageModelFeatures(BaseModel):
source_url: str
target_url: str
class ImageModelOutFeatures(BaseModel):
distance: float
input_spec = JSON(pydantic_model=ImageModelFeatures)
output_spec = JSON(pydantic_model=ImageModelOutFeatures)
@svc.api(input=input_spec, output=output_spec)
async def predict(input_data: ImageModelFeatures) -> dict:
"""
"""
source_url = modify_source_url(input_data.source_url)
source_img = url_to_processed_img(source_url)
source_embedding = await runner.async_run(source_img)
source_embedding = torch.flatten(source_embedding['avgpool'])
source_embedding = source_embedding.detach().numpy()
target_url = modify_target_url(input_data.target_url)
target_img = url_to_processed_img(target_url)
target_embedding = await runner.async_run(target_img)
target_embedding = torch.flatten(target_embedding['avgpool'])
target_embedding = target_embedding.detach().numpy()
distance = cos_sim(source_embedding, target_embedding)
return distanc
Junyeong Choi
01/12/2023, 6:12 AMSlackbot
01/13/2023, 7:07 AMSlackbot
01/15/2023, 11:14 AMSlackbot
01/16/2023, 7:14 AMSlackbot
02/05/2023, 4:11 AMSlackbot
02/13/2023, 12:44 AMSlackbot
03/22/2023, 5:38 PMSlackbot
03/27/2023, 5:33 AMSlackbot
06/01/2023, 4:34 AMCJ
07/27/2023, 12:59 PMSoungRyoul Kim
08/13/2023, 4:32 AMSlackbot
08/21/2023, 8:57 AMTim Liu
09/28/2023, 4:43 PM