Hi everyone, I want to introduce exception handlin...
# troubleshooting
v
Hi everyone, I want to introduce exception handling in flink. ispossible to use aspectJ or please suggest any recommended approach.
d
its theoretically possible to integrate aspectJ but its not a recommended practice as it could conflict with flink processing/libraries. Instead you can use try/catch blocks or if you want something more integrated with Flink you can use rich functions like RichMapFunction and recovery() methods
it also helps to define uinique ids to your operators btw
v
Thank you @D. Draco O'Brien, are there any reference you can point to for RichMapFunction and recovery methods()?
Now keep in mind this is for DataStream API if you are working with Flink SQL you can do something similar for UDF functions
For DataStream API
Copy code
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.configuration.Configuration;

public class MyRichMapFunction extends RichMapFunction<String, Integer> {

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
      
    }

    @Override
    public Integer map(String value) throws Exception {
        try {
            //  an operation that might throw an exception
            int result = Integer.parseInt(value);
            // process the value
            return result * 2; 
        } catch (NumberFormatException e) {
            // log the exception and decide how to handle it (e.g., return a default value)
            System.out.println("Error parsing value: " + e.getMessage());
            throw new RuntimeException("Failed to parse integer", e); 
        }
    }
}
Then you do the recovery() function :
Copy code
import org.apache.flink.api.common.functions.RecoverableFunction;
import org.apache.flink.util.Preconditions;

public class MyRecoveryFunction implements RecoverableFunction<String, Integer> {

    @Override
    public Integer recover(String input, Throwable failure) throws Exception {
        // log the failure
        System.out.println("Recovering from error for input: " + input);
        
        // decide on a recovery action (e.g., return a default value or null)
        return -1; // Default value in case of failure
    }

    @Override
    public boolean isRecoverable(Throwable throwable) {
        // decide whether the given exception is recoverable.
        // in this example, we assume all exceptions are recoverable.
        return true;
    }
}
putting it all together and using unique ids for ops
Copy code
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class ExceptionHandlingExample {

    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<String> source = env.fromElements("1", "two", "3", "four");

        // apply the RichMapFunction and assign a unique ID
        DataStream<Integer> mapped = source
                .map(new MyRichMapFunction())
                .uid("myRichMapper") // Assigning a unique ID
                .name("My Rich Mapper");

        // define and apply the recovery strategy
        DataStream<Integer> recovered = mapped.recover(new MyRecoveryFunction());

        recovered.print().setParallelism(1); // Output the results

        env.execute("Exception Handling Example");
    }
}
This covers the scenario for DataStream API exception handling. If you use Flink SQL API its a different ball game
v
Thank you @D. Draco O'Brien