Kaustav Ghosh
10/29/2024, 9:40 AMdef write(
self, config: Mapping[str, Any], configured_catalog: ConfiguredAirbyteCatalog, input_messages: Iterable[AirbyteMessage]
) -> Iterable[AirbyteMessage]:
"""
Reads the input stream of messages, config, and catalog to write data to Couchbase.
"""
cluster = self._get_cluster(config)
bucket_name = config["bucket"]
scope_name = config.get("scope", "_default")
batch_size = config.get("batch_size", 1000)
# Log connection config structure
<http://logger.info|logger.info>(f"Connection Config Structure: {{'bucket': '{bucket_name}', 'scope': '{scope_name}'}}")
# Get stream configurations including sync modes and primary keys
stream_configs = {}
for stream in configured_catalog.streams:
stream_configs[stream.stream.name] = {
'collection_name': self._sanitize_collection_name(stream.stream.name),
'sync_mode': stream.destination_sync_mode,
'primary_key': stream.stream.source_defined_primary_key
}
<http://logger.info|logger.info>(f"Starting write to Couchbase with {len(stream_configs)} streams")
# Set up collections and clear data for overwrite mode
collections = {}
for stream_name, stream_config in stream_configs.items():
collection = self._setup_collection(cluster, bucket_name, scope_name, stream_config['collection_name'])
if stream_config['sync_mode'] == DestinationSyncMode.overwrite:
self._clear_collection(cluster, bucket_name, scope_name, stream_config['collection_name'])
collections[stream_name] = collection
buffer = {}
for message in input_messages:
# json dumps for logging purposes
logger.debug(f"Processing message: {json.dumps(message.to_dict())}")
if message.type == Type.STATE:
try:
self._flush_buffer(collections, buffer, stream_configs)
yield message
except Exception as e:
logger.error(f"Error processing state message: {str(e)}")
raise
elif message.type == Type.RECORD:
data = message.record.data
stream = message.record.stream
try:
if stream not in stream_configs:
logger.warning(f"Encountered new stream {stream}. Adding to streams and creating collection.")
collection_name = self._sanitize_collection_name(stream)
stream_configs[stream] = {
'collection_name': collection_name,
'sync_mode': DestinationSyncMode.append,
'primary_key': []
}
collections[stream] = self._setup_collection(cluster, bucket_name, scope_name, collection_name)
if stream not in buffer:
buffer[stream] = []
document = self._prepare_document(
stream,
data,
stream_configs[stream]['primary_key'],
stream_configs[stream]['sync_mode']
)
if len(buffer[stream]) == 0:
<http://logger.info|logger.info>(f"Document Structure for stream '{stream}': {document}")
buffer[stream].append(document)
if len(buffer[stream]) >= batch_size:
self._flush_buffer(collections, {stream: buffer[stream]}, stream_configs)
buffer[stream] = []
except Exception as e:
logger.error(f"Error processing record for stream {stream}: {str(e)}")
raise
# Flush any remaining messages
if any(buffer.values()):
try:
self._flush_buffer(collections, buffer, stream_configs)
except Exception as e:
logger.error(f"Error in final buffer flush: {str(e)}")
raise
can json dump work with messageuser
10/29/2024, 9:40 AMjson.dumps()
can work with message
in your code. The message
object is an instance of AirbyteMessage
, which is a data class in Airbyte. Data classes in Python are basically regular classes which are geared towards storing state rather than containing a lot of logic. In your code, message.to_dict()
is used to convert the AirbyteMessage
object to a dictionary before passing it to json.dumps()
. This is because json.dumps()
works with objects that have a native JSON serialization format such as dict, list, str, int, float, bool, None. Here is the relevant line from your code: python logger.debug(f"Processing message: {json.dumps(message.to_dict())}")
This line is converting the message
object to a dictionary and then converting that dictionary to a JSON formatted string. For more details about AirbyteMessage
and its structure, you can refer to the [Airbyte Protocol Documentation](https://docs.airbyte.com/understanding-airbyte/airbyte-protocol#airbytemessage).Kaustav Ghosh
10/29/2024, 9:49 AMuser
10/29/2024, 9:49 AMuser
10/29/2024, 9:49 AM'AirbyteMessage' object has no attribute 'to_dict'
indicates that the AirbyteMessage
object does not have a to_dict
method. This is because AirbyteMessage
is a data class and does not inherently have a to_dict
method. To convert an AirbyteMessage
object to a dictionary, you can use the asdict
function from the dataclasses
module in Python's standard library. Here's how you can do it: python from dataclasses import asdict # Assuming `message` is an instance of `AirbyteMessage` dict_message = asdict(message)
Then, you can pass dict_message
to `json.dumps()`: python logger.debug(f"Processing message: {json.dumps(dict_message)}")
Please replace the line in your code with the above and it should resolve the issue.Kaustav Ghosh
10/29/2024, 9:51 AMlogger.debug(f"Processing message: {json.dumps(message)}")
will this workuser
10/29/2024, 9:51 AMuser
10/29/2024, 9:51 AMpython logger.debug(f"Processing message: {json.dumps(message)}")
will not work if message
is an instance of a class (like AirbyteMessage
) that is not serializable by json.dumps()
. The json.dumps()
function in Python is used to convert a Python object into a JSON string. It can only process data types that have a natural conversion to JSON such as dictionary, list, string, integer, float, boolean, None. If message
is an instance of a custom class (like AirbyteMessage
), you would need to provide a way to convert that class to a built-in data type before you can use json.dumps()
. As mentioned in the previous response, you can use the asdict
function from the dataclasses
module to convert the AirbyteMessage
object to a dictionary, which can then be passed to `json.dumps()`: python from dataclasses import asdict dict_message = asdict(message) logger.debug(f"Processing message: {json.dumps(dict_message)}")
This will work assuming message
is an instance of AirbyteMessage
or any other data class.Kaustav Ghosh
10/29/2024, 9:59 AMuser
10/29/2024, 9:59 AMuser
10/29/2024, 10:00 AMasdict()
function from the dataclasses
module was called on an object that is not an instance of a dataclass. In Python, a dataclass is a class which is typically used to store data and does not contain much functionality. The asdict()
function is used to convert an instance of a dataclass into a dictionary. If you're seeing this error, it means that the object you're trying to convert into a dictionary using asdict()
is not an instance of a dataclass. You should ensure that the object you're passing to asdict()
is indeed a dataclass instance. Here's a basic example of how you can use `asdict()`: python from dataclasses import dataclass, asdict @dataclass class ExampleDataClass: field1: str field2: int # Create an instance of the dataclass example_instance = ExampleDataClass("example string", 123) # Convert the dataclass instance to a dictionary example_dict = asdict(example_instance)
In this example, example_instance
is an instance of a dataclass, so it can be converted into a dictionary using asdict()
. If you're still facing issues, I would recommend checking the logs for more detailed error messages or traceback information. This can help you pinpoint the exact line of code or operation that is causing the error.Kaustav Ghosh
10/29/2024, 10:00 AMuser
10/29/2024, 10:00 AMuser
10/29/2024, 10:00 AMmessage
object for debugging purposes, you can use the built-in print()
function in Python. However, since message
is an instance of a custom class (like AirbyteMessage
), you might want to print its representation. In Python, every class can provide a __repr__
method that returns a string representation of the object. If the AirbyteMessage
class has a __repr__
method, you can simply print the message
object like this: python print(message)
If the AirbyteMessage
class does not provide a __repr__
method, you will see a less informative output like <AirbyteMessage object at 0x7f8e8e7b3a90>
. In this case, you might want to print the attributes of the message
object one by one, depending on what attributes the AirbyteMessage
class has. For example, if AirbyteMessage
has attributes type
and record
, you can print them like this: python print(f"type: {message.type}, record: {message.record}")
Please replace type
and record
with the actual attribute names of the AirbyteMessage
class. Remember, the way to print the message
object largely depends on what information you want to see and how the AirbyteMessage
class is implemented.Kaustav Ghosh
10/29/2024, 10:02 AM#
# Copyright (c) 2023 Airbyte, Inc., all rights reserved.
#
from dataclasses import InitVar, dataclass
from typing import Annotated, Any, Dict, List, Mapping, Optional
from airbyte_protocol_dataclasses.models import *
from serpyco_rs.metadata import Alias
@dataclass
class AirbyteStateBlob:
"""
A dataclass that dynamically sets attributes based on provided keyword arguments and positional arguments.
Used to "mimic" pydantic Basemodel with ConfigDict(extra='allow') option.
The `AirbyteStateBlob` class allows for flexible instantiation by accepting any number of keyword arguments
and positional arguments. These are used to dynamically update the instance's attributes. This class is useful
in scenarios where the attributes of an object are not known until runtime and need to be set dynamically.
Attributes:
kwargs (InitVar[Mapping[str, Any]]): A dictionary of keyword arguments used to set attributes dynamically.
Methods:
__init__(*args: Any, **kwargs: Any) -> None:
Initializes the `AirbyteStateBlob` by setting attributes from the provided arguments.
__eq__(other: object) -> bool:
Checks equality between two `AirbyteStateBlob` instances based on their internal dictionaries.
Returns `False` if the other object is not an instance of `AirbyteStateBlob`.
"""
kwargs: InitVar[Mapping[str, Any]]
def __init__(self, *args: Any, **kwargs: Any) -> None:
# Set any attribute passed in through kwargs
for arg in args:
self.__dict__.update(arg)
for key, value in kwargs.items():
setattr(self, key, value)
def __eq__(self, other: object) -> bool:
return False if not isinstance(other, AirbyteStateBlob) else bool(self.__dict__ == other.__dict__)
# The following dataclasses have been redeclared to include the new version of AirbyteStateBlob
@dataclass
class AirbyteStreamState:
stream_descriptor: StreamDescriptor # type: ignore [name-defined]
stream_state: Optional[AirbyteStateBlob] = None
@dataclass
class AirbyteGlobalState:
stream_states: List[AirbyteStreamState]
shared_state: Optional[AirbyteStateBlob] = None
@dataclass
class AirbyteStateMessage:
type: Optional[AirbyteStateType] = None # type: ignore [name-defined]
stream: Optional[AirbyteStreamState] = None
global_: Annotated[
AirbyteGlobalState | None, Alias("global")
] = None # "global" is a reserved keyword in python ⇒ Alias is used for (de-)serialization
data: Optional[Dict[str, Any]] = None
sourceStats: Optional[AirbyteStateStats] = None # type: ignore [name-defined]
destinationStats: Optional[AirbyteStateStats] = None # type: ignore [name-defined]
@dataclass
class AirbyteMessage:
type: Type # type: ignore [name-defined]
log: Optional[AirbyteLogMessage] = None # type: ignore [name-defined]
spec: Optional[ConnectorSpecification] = None # type: ignore [name-defined]
connectionStatus: Optional[AirbyteConnectionStatus] = None # type: ignore [name-defined]
catalog: Optional[AirbyteCatalog] = None # type: ignore [name-defined]
record: Optional[AirbyteRecordMessage] = None # type: ignore [name-defined]
state: Optional[AirbyteStateMessage] = None
trace: Optional[AirbyteTraceMessage] = None # type: ignore [name-defined]
control: Optional[AirbyteControlMessage] = None # type: ignore [name-defined]
@kapa.ai this is how it looks likeuser
10/29/2024, 10:02 AMuser
10/29/2024, 10:03 AMAirbyteMessage
by accessing its attributes directly. Here's an example: python print(f"type: {message.type}") print(f"log: {message.log}") print(f"spec: {message.spec}") print(f"connectionStatus: {message.connectionStatus}") print(f"catalog: {message.catalog}") print(f"record: {message.record}") print(f"state: {message.state}") print(f"trace: {message.trace}") print(f"control: {message.control}")
In this example, message
is an instance of AirbyteMessage
. Each print
statement will print the value of the corresponding attribute of the message
object. Please note that the output of this code will depend on the __repr__
or __str__
methods of the classes of each attribute. If these methods are not defined, you might see less informative output like <AirbyteLogMessage object at 0x7f8e8e7b3a90>
. If you want to print the attributes of the nested objects (like message.record
if it's not None
), you would need to access them in a similar way. For example, if AirbyteRecordMessage
has attributes namespace
, stream
, data
, and emitted_at
, you can print them like this: python if message.record is not None: print(f"record.namespace: {message.record.namespace}") print(f"record.stream: {message.record.stream}") print(f"record.data: {message.record.data}") print(f"record.emitted_at: {message.record.emitted_at}")
Again, replace namespace
, stream
, data
, and emitted_at
with the actual attribute names of the AirbyteRecordMessage
class.