Yannick Sacherer
10/26/2024, 7:56 AMuser
10/26/2024, 7:56 AMHttpStream
class in Airbyte. Here's how you can approach this: 1. Use the next_page_token
method to keep track of the number of records processed and determine when to make the next request. 2. In your parse_response
method, count the number of records processed. 3. When you reach 10,000 records, return a token from next_page_token
to trigger the next request. 4. Use the last state from the previous API call as the starting point for the next request. Here's a basic implementation example: python class YourCustomStream(HttpStream): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.records_processed = 0 self.last_state = None def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: if self.records_processed >= 10000: self.records_processed = 0 return {"last_state": self.last_state} return None def request_params( self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, Any] = None, next_page_token: Mapping[str, Any] = None ) -> MutableMapping[str, Any]: params = super().request_params(stream_state, stream_slice, next_page_token) if next_page_token: params["last_state"] = next_page_token["last_state"] return params def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: records = response.json() # Adjust this based on your API response structure for record in records: self.records_processed += 1 self.last_state = record["id"] # Adjust this based on your record structure yield record
In this example: 1. We keep track of records_processed
and last_state
. 2. In next_page_token
, we return a token with the last_state
when we've processed 10,000 records. 3. In request_params
, we include the last_state
in the request parameters when making the next API call. 4. In parse_response
, we update records_processed
and last_state
as we process each record. This approach allows you to paginate through your API results by making a new request every 10,000 records, using the last state from the previous call as the starting point for the next request. Remember to adjust the code according to your specific API structure and requirements. This example assumes that each record has an id
field that can be used as the state, but you should modify this based on your actual data structure. [Source: HTTP-API-based Connectors](https://docs.airbyte.com/connector-development/cdk-python/http-streams#pagination)Yannick Sacherer
10/28/2024, 11:44 AMuser
10/28/2024, 11:44 AMuser
10/28/2024, 11:45 AMIncrementalMixin
. Here's an updated approach that should work better:
python
from airbyte_cdk.sources.streams import IncrementalMixin
class YourCustomStream(HttpStream, IncrementalMixin):
cursor_field = "id" # Adjust this to your actual cursor field
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.records_processed = 0
self._cursor_value = None
@property
def state(self) -> Mapping[str, Any]:
if self._cursor_value:
return {self.cursor_field: self._cursor_value}
return {}
@state.setter
def state(self, value: Mapping[str, Any]):
self._cursor_value = value.get(self.cursor_field)
def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]:
if self.records_processed >= 10000:
self.records_processed = 0
return {"continue": True}
return None
def request_params(
self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, Any] = None, next_page_token: Mapping[str, Any] = None
) -> MutableMapping[str, Any]:
params = super().request_params(stream_state, stream_slice, next_page_token)
if self._cursor_value:
params[self.cursor_field] = self._cursor_value
return params
def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]:
records = response.json() # Adjust this based on your API response structure
for record in records:
self.records_processed += 1
yield record
self._cursor_value = max(self._cursor_value, record[self.cursor_field]) if self._cursor_value else record[self.cursor_field]
def read_records(self, *args, **kwargs) -> Iterable[Mapping[str, Any]]:
for record in super().read_records(*args, **kwargs):
yield record
self._cursor_value = None # Reset cursor value after each page
This implementation uses the IncrementalMixin
and properly manages the state:
1. We define a cursor_field
which is used to track the progress of the sync.
2. The state
property and setter handle storing and retrieving the current state.
3. In request_params
, we use the _cursor_value
to set the starting point for each request.
4. In parse_response
, we update the _cursor_value
with each record processed.
5. The read_records
method resets the _cursor_value
after each page to ensure we don't miss any records.user
10/28/2024, 11:45 AMIncrementalMixin
. Here's an updated approach that should work better: python from airbyte_cdk.sources.streams import IncrementalMixin class YourCustomStream(HttpStream, IncrementalMixin): cursor_field = "id" # Adjust this to your actual cursor field def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.records_processed = 0 self._cursor_value = None @property def state(self) -> Mapping[str, Any]: if self._cursor_value: return {self.cursor_field: self._cursor_value} return {} @state.setter def state(self, value: Mapping[str, Any]): self._cursor_value = value.get(self.cursor_field) def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: if self.records_processed >= 10000: self.records_processed = 0 return {"continue": True} return None def request_params( self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, Any] = None, next_page_token: Mapping[str, Any] = None ) -> MutableMapping[str, Any]: params = super().request_params(stream_state, stream_slice, next_page_token) if self._cursor_value: params[self.cursor_field] = self._cursor_value return params def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: records = response.json() # Adjust this based on your API response structure for record in records: self.records_processed += 1 yield record self._cursor_value = max(self._cursor_value, record[self.cursor_field]) if self._cursor_value else record[self.cursor_field] def read_records(self, *args, **kwargs) -> Iterable[Mapping[str, Any]]: for record in super().read_records(*args, **kwargs): yield record self._cursor_value = None # Reset cursor value after each page
This implementation uses the IncrementalMixin
and properly manages the state: 1. We define a cursor_field
which is used to track the progress of the sync. 2. The state
property and setter handle storing and retrieving the current state. 3. In request_params
, we use the _cursor_value
to set the starting point for each request. 4. In parse_response
, we update the _cursor_value
with each record processed. 5. The read_records
method resets the _cursor_value
after each page to ensure we don't miss any records. This approach should maintain the state correctly between sync runs, ensuring that each new request starts from where the previous one left off. Remember to adjust the cursor_field
and the logic in parse_response
to match your specific API and data structure. [Source: Incremental Streams](https://docs.airbyte.com/connector-development/cdk-python/incremental-stream#incrementalmixin) If you're still experiencing issues, it might be helpful to add some logging to track the state values at different points in the sync process to help debug the problem.Yannick Sacherer
10/28/2024, 11:46 AMuser
10/28/2024, 11:46 AMuser
10/28/2024, 11:46 AMcursor_value
can make a significant difference in how your incremental sync behaves. Here are some key points to consider: 1. State Initialization: The state
property getter should be called before any data processing begins. This ensures that you start with the correct state from the previous sync. python @property def state(self) -> Mapping[str, Any]: if self._cursor_value: return {self.cursor_field: self._cursor_value} return {}
2. State Update: The state should be updated after processing each record, typically in the parse_response
method: python def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: records = response.json() for record in records: yield record self._cursor_value = max(self._cursor_value, record[self.cursor_field]) if self._cursor_value else record[self.cursor_field]
3. State Usage in Requests: The current state should be used when forming the next request, usually in the request_params
method: python def request_params(self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, Any] = None, next_page_token: Mapping[str, Any] = None) -> MutableMapping[str, Any]: params = super().request_params(stream_state, stream_slice, next_page_token) if self._cursor_value: params[self.cursor_field] = self._cursor_value return params
4. State Reset: If you're implementing pagination, you might want to reset the cursor value after each page to ensure you don't miss any records: python def read_records(self, *args, **kwargs) -> Iterable[Mapping[str, Any]]: for record in super().read_records(*args, **kwargs): yield record self._cursor_value = None # Reset cursor value after each page
The order of these operations is crucial for maintaining the correct state throughout the sync process. If you set the cursor value too early or read it too late, you might end up with incorrect sync behavior, such as missing records or unnecessary data retrieval. [Source: Incremental Streams](https://docs.airbyte.com/connector-development/cdk-python/incremental-stream#incrementalmixin) Remember, the exact implementation might vary depending on your specific API and data structure, but these principles should guide you in maintaining the correct order of operations for setting and getting the cursor value.Yannick Sacherer
10/28/2024, 11:47 AMuser
10/28/2024, 11:47 AMuser
10/28/2024, 11:47 AMcursor_value
when sending the next_page_token
, you can modify your implementation of the HttpStream
class. Here's how you can approach this: 1. Set the cursor_value
in the parse_response
method: python def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: records = response.json() # Adjust based on your API response structure for record in records: self._cursor_value = max(self._cursor_value, record[self.cursor_field]) if self._cursor_value else record[self.cursor_field] yield record
2. Use the cursor_value
in the next_page_token
method: python def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: if self.records_processed >= 10000: self.records_processed = 0 return {"cursor": self._cursor_value} return None
3. Retrieve and use the cursor_value
in the request_params
method: python def request_params( self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, Any] = None, next_page_token: Mapping[str, Any] = None ) -> MutableMapping[str, Any]: params = super().request_params(stream_state, stream_slice, next_page_token) if next_page_token: params[self.cursor_field] = next_page_token["cursor"] elif self._cursor_value: params[self.cursor_field] = self._cursor_value return params
This approach ensures that: 1. The cursor_value
is updated with each record processed. 2. When a new page is needed, the current cursor_value
is included in the next_page_token
. 3. The cursor_value
from the next_page_token
is used in the parameters for the next request. Remember to adjust the field names and logic according to your specific API requirements. [Source: HTTP-API-based Connectors](https://docs.airbyte.com/connector-development/cdk-python/http-streams#pagination) By following this pattern, you can effectively manage the cursor_value
across pagination requests, ensuring that each new request starts from the correct point in your data set.Yannick Sacherer
10/28/2024, 11:56 AMdef next_page_token(
self,
response: requests.Response
) -> Optional[Mapping[str, Any]]:
"""
Overrides the abstract property from the parent class `HttpStream`.
:returns: The token for the next page from the input response object. Returning None means there are no more pages to read in this response.
"""
if self._record_counter >= 10000:
<http://logging.info|logging.info>(f"Return last state: {self._record_counter}")
print(f"return last state in pagination: {self._record_counter}")
self._record_counter = 0
print(f"return new state in pagination: {self._record_counter}")
return {"last_state": self._cursor_value} # Return last state for the next request
return None
def request_body_data(
self,
stream_state: Optional[Mapping[str, Any]],
stream_slice: Optional[Mapping[str, Any]] = None,
next_page_token: Optional[Mapping[str, Any]] = None
) -> Optional[Mapping[str, Any]]:
# If no stream_state, return the query as is
if not stream_state:
return self.query
# Add filter term from stream_state
self.query = xmltodict.parse(self.query)
self.query["QueryRequest"]["FilterTerms"] = {
"FilterTerm": {
"ColumnName": self.cursor_field,
"Operator": "GREATER",
"Values": {"string": str(stream_state[self.cursor_field])},
}
}
self.query = xmltodict.unparse(self.query)
return self.query
def read_records(
self,
sync_mode: SyncMode,
cursor_field: Optional[List[str]] = None,
stream_slice: Optional[Mapping[str, Any]] = None,
stream_state: Optional[Mapping[str, Any]] = None
) -> Iterable[Mapping[str, Any]]:
if stream_state and sync_mode == SyncMode.incremental:
self._cursor_value = stream_state[self.cursor_field]
if not stream_state and sync_mode == SyncMode.incremental:
self._cursor_value = 0
print(f"record_counter start: {self._record_counter}")
for record in super().read_records(
sync_mode, cursor_field, stream_slice, stream_state
):
if sync_mode == SyncMode.incremental:
if str(record[self.cursor_field]) > str(self._cursor_value):
self._cursor_value = str(record[self.cursor_field])
self._record_counter += 1 # Count the number of records processed
yield record
so that if it returns the next_page_token: {"last_state": self._cursor_value} that we then use the cursor_value for theuser
10/28/2024, 11:56 AMuser
10/28/2024, 11:56 AMcursor_value
in the next request: 1. In your next_page_token
method: You're correctly returning the _cursor_value
when you've processed 10,000 records. This is good for pagination control. 2. In your request_body_data
method: You're using the stream_state
to update the query with a filter based on the cursor_field
. This is correct for incremental syncs. 3. In your read_records
method: You're updating the _cursor_value
as you process each record, which is the right approach. To use the cursor_value
from the next_page_token
in the next request, you should modify your request_body_data
method to also check for the next_page_token
. Here's how you can do that: python def request_body_data( self, stream_state: Optional[Mapping[str, Any]], stream_slice: Optional[Mapping[str, Any]] = None, next_page_token: Optional[Mapping[str, Any]] = None ) -> Optional[Mapping[str, Any]]: self.query = xmltodict.parse(self.query) if next_page_token: # Use the cursor_value from next_page_token cursor_value = next_page_token["last_state"] elif stream_state: # Use the cursor_value from stream_state cursor_value = stream_state[self.cursor_field] else: # No state or token, return the query as is return xmltodict.unparse(self.query) # Add filter term using the cursor_value self.query["QueryRequest"]["FilterTerms"] = { "FilterTerm": { "ColumnName": self.cursor_field, "Operator": "GREATER", "Values": {"string": str(cursor_value)}, } } return xmltodict.unparse(self.query)
This modification ensures that: 1. If there's a next_page_token
, it uses the last_state
(which is your _cursor_value
) from it. 2. If there's no next_page_token
but there is a stream_state
, it uses that. 3. If neither exists, it returns the query without modification. This approach allows you to seamlessly use the cursor_value
across pagination requests and between sync runs, ensuring that you're always fetching the most up-to-date data. Remember to adjust the field names and XML structure according to your specific API requirements. [Source: Incremental Streams](https://docs.airbyte.com/connector-development/cdk-python/incremental-stream#incrementalmixin) By implementing this logic, you're ensuring that your connector correctly handles both pagination and incremental syncs, using the cursor_value
effectively in both scenarios.Yannick Sacherer
10/28/2024, 12:32 PMuser
10/28/2024, 12:32 PMuser
10/28/2024, 12:32 PM_cursor_value
is primarily updated in two methods: 1. In the parse_response
method: This is where the _cursor_value
is updated for each record processed. Here's an example of how it might look: python def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: records = response.json() # Adjust based on your API response structure for record in records: self._cursor_value = max(self._cursor_value, record[self.cursor_field]) if self._cursor_value else record[self.cursor_field] yield record
2. In the read_records
method: You've shown that you're updating the _cursor_value
in this method as well: python def read_records(self, sync_mode: SyncMode, cursor_field: Optional[List[str]] = None, stream_slice: Optional[Mapping[str, Any]] = None, stream_state: Optional[Mapping[str, Any]] = None) -> Iterable[Mapping[str, Any]]: # ... other code ... for record in super().read_records(sync_mode, cursor_field, stream_slice, stream_state): if sync_mode == SyncMode.incremental: if str(record[self.cursor_field]) > str(self._cursor_value): self._cursor_value = str(record[self.cursor_field]) self._record_counter += 1 yield record
The _cursor_value
is updated in these methods before the next request is sent. The updated value is then used in the next_page_token
method to determine if a new page should be requested and what the last state was. It's important to note that the read_records
method is typically called for each page of results, so the _cursor_value
is continuously updated as records are processed, ensuring that it always represents the most recent state before the next request is made. [Source: Incremental Streams](https://docs.airbyte.com/connector-development/cdk-python/incremental-stream#incrementalmixin) Remember, the exact implementation may vary depending on your specific connector's needs, but these are the key methods where the _cursor_value
is typically updated before the next request is sent.Yannick Sacherer
10/28/2024, 12:54 PMuser
10/28/2024, 12:54 PMuser
10/28/2024, 12:54 PMparse_response
and read_records
methods serve different purposes in the Airbyte CDK, although they are closely related. Let me explain the key differences: 1. parse_response
method: - This method is responsible for parsing the raw API response and extracting individual records. - It's typically called for each API response received. - It yields individual records from the response. - It's where you would implement the logic to extract data from the specific format of your API response (e.g., JSON, XML). Example: python def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]: data = response.json() for record in data['results']: yield record
2. read_records
method: - This is a higher-level method that orchestrates the entire reading process for a stream. - It handles pagination, calling parse_response
for each page of results. - It's where you implement stream-wide logic, such as updating the stream state or handling incremental syncs. - It yields records from all pages of the API response. Example: python def read_records(self, sync_mode: SyncMode, cursor_field: Optional[List[str]] = None, stream_slice: Optional[Mapping[str, Any]] = None, stream_state: Optional[Mapping[str, Any]] = None) -> Iterable[Mapping[str, Any]]: for page in self.paginate(): for record in self.parse_response(page, stream_state=stream_state): if sync_mode == SyncMode.incremental: self._cursor_value = max(self._cursor_value, record[self.cursor_field]) yield record
The main difference is that parse_response
deals with individual API responses, while read_records
manages the overall process of reading data from the stream, including pagination and state management. In most cases, you'll need to implement parse_response
to handle the specific format of your API responses. The read_records
method is often handled by the base HttpStream
class, but you might override it if you need custom logic for pagination or state management. [Source: HTTP-API-based Connectors](https://docs.airbyte.com/connector-development/cdk-python/http-streams#pagination) Remember, the exact implementation may vary depending on your specific connector's needs and the structure of your API responses.