Phạm Mạnh Hùng
10/25/2024, 7:42 AMuser
10/25/2024, 7:43 AMA data sync may create multiple files as the output files can be partitioned by size (targeting a size of 200MB compressed or lower).
2. Parallel stream syncs: The option to control the part size (part_size_mb
) was deprecated to achieve parallel stream syncs to S3 and other bucket services, as mentioned in this [forum post](https://discuss.airbyte.io/t/2292): The option of `part_size_mb` was deprecated in <https://github.com/airbytehq/airbyte/pull/13753> this was necessary to achieve parallel stream syncs to S3 and other bucket services.
3. File naming pattern: Each file follows a specific naming pattern that includes the stream name, upload date, and a unique identifier. This allows for easy sorting and identification of files, as explained in the [GCS documentation](https://docs.airbyte.com/integrations/destinations/gcs#configuration). While there isn't currently a way to directly control the chunk size or number of output files, this splitting behavior is intentional and designed to optimize the sync process for large datasets. If you need to work with a single consolidated file after the sync, you may need to implement a post-processing step to combine these files on the destination S3 bucket.Phạm Mạnh Hùng
10/25/2024, 7:55 AMuser
10/25/2024, 7:55 AM.gz
extension to the filename [Azure Blob Storage](https://docs.airbyte.com/integrations/destinations/azure-blob-storage#csv). 5. For some destinations like Azure Blob Storage, you can optionally enable the "File Extension" field to save the output files with a .csv
extension [Azure Blob Storage](https://docs.airbyte.com/integrations/destinations/azure-blob-storage#csv). Remember that the exact steps might vary depending on your specific source and destination. You'll need to configure both your source connector and a destination connector that supports CSV output (like S3, GCS, or Azure Blob Storage) to complete the synchronization process.Phạm Mạnh Hùng
10/25/2024, 8:00 AMuser
10/25/2024, 8:00 AMuser
10/25/2024, 8:01 AMPhạm Mạnh Hùng
10/25/2024, 8:30 AMuser
10/25/2024, 8:30 AMuser
10/25/2024, 8:31 AM<name>
with the name of your connector: bash docker build . -t airbyte/source-<name>:dev
This command builds a Docker image from your current directory (.
) and tags it as airbyte/source-<name>:dev
[source](https://docs.airbyte.com/connector-development/tutorials/the-hard-way/build-a-connector-the-hard-way#3-package-the-connector-in-a-docker-image). 3. Verify that the new image has been created by running: bash docker images
You should see your new image listed in the output [source](https://airbyte.com/tutorials/extract-data-from-the-webflow-api#step-4). Remember, every time you make changes to your connector, you need to rebuild the Docker image for those changes to take effect.Phạm Mạnh Hùng
10/25/2024, 8:34 AMuser
10/25/2024, 8:34 AMuser
10/25/2024, 8:34 AMDockerfile FROM python:3.9-slim WORKDIR /airbyte/integration_code # Install any needed Python dependencies RUN pip install requests # Copy source files COPY source.py . COPY spec.json . # When this container is invoked, append the input arguments to `python source.py` ENTRYPOINT ["python", "/airbyte/integration_code/source.py"] # Airbyte's build system uses these labels to know what to name and tag the docker images produced by this Dockerfile. LABEL io.airbyte.name=airbyte/source-<name> LABEL io.airbyte.version=0.1.0 # In order to launch a source on Kubernetes in a pod, we need to be able to wrap the entrypoint. # The source connector must specify its entrypoint in the AIRBYTE_ENTRYPOINT variable. ENV AIRBYTE_ENTRYPOINT='python /airbyte/integration_code/source.py'
Replace <name>
with the name of your connector. This Dockerfile assumes that your connector's code is in a file named source.py
and that your connector's specification is in a file named spec.json
. If your files have different names, you should replace source.py
and spec.json
with your actual file names [source](https://docs.airbyte.com/connector-development/tutorials/the-hard-way/build-a-connector-the-hard-way#3-package-the-connector-in-a-docker-image). Please note that this is a basic example and might need to be adjusted based on your specific needs. For example, you might need to install additional Python packages with the pip install
command.Phạm Mạnh Hùng
10/25/2024, 8:36 AMuser
10/25/2024, 8:36 AMuser
10/25/2024, 8:37 AMDockerfile FROM python:3.9-slim WORKDIR /airbyte/integration_code # Install any needed Python dependencies RUN pip install boto3 # Copy destination files COPY destination.py . COPY spec.json . # When this container is invoked, append the input arguments to `python destination.py` ENTRYPOINT ["python", "/airbyte/integration_code/destination.py"] # Airbyte's build system uses these labels to know what to name and tag the docker images produced by this Dockerfile. LABEL io.airbyte.name=airbyte/destination-s3 LABEL io.airbyte.version=0.1.0 # In order to launch a destination on Kubernetes in a pod, we need to be able to wrap the entrypoint. # The destination connector must specify its entrypoint in the AIRBYTE_ENTRYPOINT variable. ENV AIRBYTE_ENTRYPOINT='python /airbyte/integration_code/destination.py'
This Dockerfile assumes that your connector's code is in a file named destination.py
and that your connector's specification is in a file named spec.json
. If your files have different names, you should replace destination.py
and spec.json
with your actual file names. Please note that this is a basic example and might need to be adjusted based on your specific needs. For example, you might need to install additional Python packages with the pip install
command. The boto3
package is commonly used for interacting with Amazon S3, but your actual dependencies might be different.Phạm Mạnh Hùng
10/25/2024, 9:15 AMuser
10/25/2024, 9:15 AMuser
10/25/2024, 9:16 AMcheck
function for an S3 destination in Python. This function would be part of a larger class or script that implements the destination logic. python import boto3 from botocore.exceptions import NoCredentialsError def check(self, logger, config): """ Tests if the input configuration can be used to successfully connect to the S3 bucket :param logger: Logging object to display debug/info/error to the logs :param config: Json object containing the configuration of this destination :return: A tuple (boolean, error). If boolean is true, then the connection was successful and error should be None. Otherwise, the input configuration could not connect to the S3 bucket, and error should describe what went wrong. """ s3 = boto3.client( 's3', aws_access_key_id=config.get('aws_access_key_id'), aws_secret_access_key=config.get('aws_secret_access_key'), region_name=config.get('region_name') ) try: s3.head_bucket(Bucket=config.get('bucket_name')) return True, None except NoCredentialsError: return False, "No AWS credentials found" except Exception as e: return False, f"Unable to connect to the S3 bucket with the provided configuration - {str(e)}"
This function uses the boto3
library to interact with S3. It attempts to connect to the S3 bucket specified in the config
parameter. If the connection is successful, it returns True, None
. If the connection fails due to missing AWS credentials, it returns False, "No AWS credentials found"
. If the connection fails due to any other reason, it returns False
along with a description of the error. Please note that this is a basic example and might need to be adjusted based on your specific needs. For example, your actual configuration might include different or additional parameters, and you might need to handle additional types of errors.Phạm Mạnh Hùng
10/25/2024, 9:44 AMuser
10/25/2024, 9:44 AMuser
10/25/2024, 9:45 AMconfig.json
file for an S3 destination: json { "access_key_id": "YOUR_ACCESS_KEY_ID", "secret_access_key": "YOUR_SECRET_ACCESS_KEY", "bucket_name": "YOUR_BUCKET_NAME", "bucket_path": "YOUR_BUCKET_PATH", "bucket_region": "YOUR_BUCKET_REGION", "role_arn": "YOUR_ROLE_ARN", "s3_endpoint": "YOUR_S3_ENDPOINT", "s3_path_format": "YOUR_S3_PATH_FORMAT", "s3_filename_pattern": "YOUR_S3_FILENAME_PATTERN" }
You should replace the placeholders (YOUR_ACCESS_KEY_ID
, YOUR_SECRET_ACCESS_KEY
, etc.) with your actual values. Here's what each field means: - `access_key_id`: Your AWS access key ID. - `secret_access_key`: Your AWS secret access key. - `bucket_name`: The name of your S3 bucket. - `bucket_path`: The path within your S3 bucket where you want to store the data. - `bucket_region`: The AWS region where your S3 bucket is located. - `role_arn`: The ARN of the AWS role to assume (if you're using STS Assume Role). - `s3_endpoint`: The endpoint URL of your S3 service (leave empty if using AWS S3, fill in S3 URL if using Minio S3). - `s3_path_format`: The format for how to store data under S3 Bucket Path. Default value is ${NAMESPACE}/${STREAM_NAME}/${YEAR}_${MONTH}_${DAY}_${EPOCH}_
. - `s3_filename_pattern`: The pattern for the S3 staging file(s) filename. Supported placeholders are {date}
, {date:yyyy_MM}
, {timestamp}
, {timestamp:millis}
, {timestamp:micros}
, {part_number}
, {sync_id}
, {format_extension}
. Please note that not all fields may be required for your specific use case. For example, if you're using AWS credentials, you don't need to provide a role_arn
. If you're using an instance profile, you can omit the access_key_id
and secret_access_key
[source](https://docs.airbyte.com/integrations/destinations/s3#prerequisites).Phạm Mạnh Hùng
10/25/2024, 10:21 AMuser
10/25/2024, 10:21 AMuser
10/25/2024, 10:21 AMaccess_key_id
, secret_access_key
, và bucket_name
. Dưới đây là một ví dụ về cách thức hoạt động của hàm check
trong mã nguồn Python: python import boto3 from botocore.exceptions import NoCredentialsError def check(self, logger, config): s3 = boto3.client( 's3', aws_access_key_id=config.get('aws_access_key_id'), aws_secret_access_key=config.get('aws_secret_access_key'), region_name=config.get('region_name') ) try: s3.head_bucket(Bucket=config.get('bucket_name')) return True, None except NoCredentialsError: return False, "No AWS credentials found" except Exception as e: return False, f"Unable to connect to the S3 bucket with the provided configuration - {str(e)}"
Trong đoạn mã trên, Airbyte sử dụng thư viện boto3
để tạo một kết nối đến S3. Nếu kết nối thành công, hàm check
sẽ trả về True, None
. Nếu không thể kết nối do thiếu thông tin xác thực AWS, hàm sẽ trả về False, "No AWS credentials found"
. Nếu có lỗi khác xảy ra, hàm sẽ trả về False
cùng với mô tả lỗi [source](https://github.com/airbytehq/airbyte/issues/18277). Lưu ý rằng đây chỉ là một ví dụ cơ bản và có thể cần được điều chỉnh dựa trên yêu cầu cụ thể của bạn.Phạm Mạnh Hùng
10/25/2024, 10:22 AMPhạm Mạnh Hùng
10/25/2024, 10:23 AMuser
10/25/2024, 10:23 AMuser
10/25/2024, 10:23 AMstatus
từ một đối tượng tuple
, nhưng tuple
không có thuộc tính này. Lỗi này có thể xuất phát từ việc mã nguồn đang cố gắng xử lý một thông điệp không hợp lệ hoặc không đúng định dạng từ Airbyte. Bạn nên kiểm tra lại cách mã nguồn của bạn xử lý các thông điệp từ Airbyte. Ngoài ra, bạn đang sử dụng Python 3.10, trong khi hầu hết các connector Python của Airbyte đều chạy trên Python 3.9. Điều này có thể gây ra một số vấn đề tương thích. Bạn nên cân nhắc việc chuyển sang sử dụng Python 3.9 [source](https://discuss.airbyte.io/t/1023). Cuối cùng, bạn nên kiểm tra lại cấu hình của mình bằng cách chạy lệnh sau: bash python main.py check --config secrets/config.json
Nếu bạn gặp vấn đề, hãy chia sẻ thông tin lỗi tại đây để có thể nhận được hỗ trợ tốt hơn [source](https://discuss.airbyte.io/t/943).