mike Trienis
06/03/2024, 5:42 PMkapa.ai
06/03/2024, 5:42 PMvalues.yaml
file in the Airbyte repository to include the metrics-reporter
container. This will submit Airbyte metrics to the OpenTelemetry collector. Here is an example of how to modify your values.yaml
file: yaml global: metrics: metricClient: "otel" otelCollectorEndpoint: "<http://otel-collector.opentelemetry.svc:4317>" metrics: enabled: true
Make sure to update the value of otelCollectorEndpoint
with your collector URL. ### Step 3: Re-deploy Airbyte With the updated chart values, you are ready to deploy your Airbyte application by upgrading the chart. ### Step 4: Configure Prometheus to Scrape Metrics Ensure that Prometheus is configured to scrape data from the OpenTelemetry collector. You can do this by adding a scrape configuration in your Prometheus configuration file: yaml scrape_configs: - job_name: 'opentelemetry-collector' static_configs: - targets: ['otel-collector.opentelemetry.svc:4317']
### Step 5: Visualize Metrics in Grafana Finally, you can set up Grafana to visualize the metrics collected by Prometheus. Add Prometheus as a data source in Grafana and create dashboards to display the metrics. ### Additional Information - If you encounter warnings like Instrument has recorded multiple values for the same attributes
, it might be due to the OpenTelemetry SDK emitting multiple values for the same attributes. This is a known issue and can be monitored for further investigation. For more detailed information, you can refer to the following resources: - [Collecting Metrics | Airbyte Documentation](https://docs.airbyte.com/operator-guides/collecting-metrics#helm-chart-setup-instructions) - [How can I monitor Airbyte OSS on Kubernetes using Prometheus?](https://discuss.airbyte.io/t/how-can-i-monitor-airbyte-oss-on-kubernetes-using-prometheus/172) By following these steps, you should be able to monitor your Airbyte deployment in Kubernetes using Prometheus.mike Trienis
06/03/2024, 6:27 PMkapa.ai
06/03/2024, 6:27 PMkapa.ai
06/03/2024, 6:27 PMhcl
provider "airbyte" {
server_url = "<http://localhost:8000>"
}
resource "airbyte_source" "example_source" {
name = "example-source"
source_type = "file"
configuration = {
url = "<https://example.com/data.csv>"
}
}
resource "airbyte_destination" "example_destination" {
name = "example-destination"
destination_type = "postgres"
configuration = {
host = "localhost"
port = 5432
database = "example_db"
username = "user"
password = "password"
}
}
resource "airbyte_connection" "example_connection" {
name = "example-connection"
source_id = airbyte_source.example_source.id
destination_id = airbyte_destination.example_destination.id
sync_mode = "full_refresh"
destination_sync_mode = "append"
}
2. Apply the Configuration:
Run the following commands to apply the Terraform configuration:
sh
terraform init
terraform apply
### Using Apache Airflow
Apache Airflow can be used to orchestrate and automate the execution of Airbyte syncs.
1. Create an Airflow DAG:
Define a DAG in Airflow to trigger Airbyte syncs. Here’s an example snippet:
python
from airflow import DAG
from airflow.providers.airbyte.operators.airbyte import AirbyteTriggerSyncOperator
from datetime import datetime
default_args = {
'owner': 'airflow',
'start_date': datetime(2023, 1, 1),
'retries': 1,
}
with DAG('airbyte_sync_dag', default_args=default_args, schedule_interval='@daily') as dag:
airbyte_sync = AirbyteTriggerSyncOperator(
task_id='airbyte_sync_task',
airbyte_conn_id='airbyte_default',
connection_id='YOUR_AIRBYTE_CONNECTION_ID',
asynchronous=False,
timeout=3600,
wait_seconds=3
)
2. Deploy the DAG:
Place the DAG file in the Airflow DAGs directory and restart the Airflow scheduler.
### Using Kubernetes
Kubernetes can be used to deploy and manage Airbyte instances, ensuring scalability and reliability.
1. Deploy Airbyte on Kubernetes:
Use Helm charts to deploy Airbyte on Kubernetes. Update the values.yaml
file to include your custom configurations.kapa.ai
06/03/2024, 6:27 PMhcl provider "airbyte" { server_url = "<http://localhost:8000>" } resource "airbyte_source" "example_source" { name = "example-source" source_type = "file" configuration = { url = "<https://example.com/data.csv>" } } resource "airbyte_destination" "example_destination" { name = "example-destination" destination_type = "postgres" configuration = { host = "localhost" port = 5432 database = "example_db" username = "user" password = "password" } } resource "airbyte_connection" "example_connection" { name = "example-connection" source_id = airbyte_source.example_source.id destination_id = airbyte_destination.example_destination.id sync_mode = "full_refresh" destination_sync_mode = "append" }
2. Apply the Configuration: Run the following commands to apply the Terraform configuration: sh terraform init terraform apply
### Using Apache Airflow Apache Airflow can be used to orchestrate and automate the execution of Airbyte syncs. 1. Create an Airflow DAG: Define a DAG in Airflow to trigger Airbyte syncs. Here’s an example snippet: python from airflow import DAG from airflow.providers.airbyte.operators.airbyte import AirbyteTriggerSyncOperator from datetime import datetime default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), 'retries': 1, } with DAG('airbyte_sync_dag', default_args=default_args, schedule_interval='@daily') as dag: airbyte_sync = AirbyteTriggerSyncOperator( task_id='airbyte_sync_task', airbyte_conn_id='airbyte_default', connection_id='YOUR_AIRBYTE_CONNECTION_ID', asynchronous=False, timeout=3600, wait_seconds=3 )
2. Deploy the DAG: Place the DAG file in the Airflow DAGs directory and restart the Airflow scheduler. ### Using Kubernetes Kubernetes can be used to deploy and manage Airbyte instances, ensuring scalability and reliability. 1. Deploy Airbyte on Kubernetes: Use Helm charts to deploy Airbyte on Kubernetes. Update the values.yaml
file to include your custom configurations. yaml global: metrics: metricClient: "otel" otelCollectorEndpoint: "<http://otel-collector.opentelemetry.svc:4317>" metrics: enabled: true
2. Apply the Helm Chart: Run the following command to deploy Airbyte: sh helm install airbyte airbyte/airbyte -f values.yaml
### Where Should the Automation Live? - Infrastructure-as-Code (IaC) Repositories: Store your Terraform configurations in a dedicatedmike Trienis
06/04/2024, 6:26 PMkapa.ai
06/04/2024, 6:26 PMkapa.ai
06/04/2024, 6:26 PMairbyte-api-python-sdk
installed. However, you can easily create a custom Docker image that includes the airbyte-api-python-sdk
by using a Dockerfile. Here’s an example of how you can create such a Docker image: ### Step-by-Step Guide to Create a Custom Docker Image 1. Create a Dockerfile: Create a file named Dockerfile
in your project directory with the following content: Dockerfile FROM python:3.9-slim # Install the airbyte-api-python-sdk RUN pip install airbyte-api-python-sdk # Set the working directory WORKDIR /app # Copy your application code to the container COPY . /app # Set the entrypoint for your application CMD ["python", "your_script.py"]
2. Build the Docker Image: Run the following command in your terminal to build the Docker image: sh docker build -t custom-airbyte-api-sdk-image .
3. Run the Docker Container: Once the image is built, you can run a container using the following command: sh docker run -it --rm custom-airbyte-api-sdk-image
### Additional Resources For more detailed information on building Docker images and using Docker with Airbyte, you can refer to the following resources: - [Developing on Docker | Airbyte Documentation](https://docs.airbyte.com/contributing-to-airbyte/resources/developing-on-docker#building-the-docker-images) - [Building a Source Connector: The Hard Way | Airbyte Documentation](https://docs.airbyte.com/connector-development/tutorials/the-hard-way/build-a-connector-the-hard-way#1-publish-the-docker-image) By following these steps, you can create a Docker image that includes the airbyte-api-python-sdk
and use it for your custom applications.mike Trienis
06/04/2024, 9:53 PMres = s.sources.create_source(request=models.SourceCreateRequest(
configuration=models.SourceAha(
api_key='<value>',
url='<https://complicated-seat.org>',
),
name='My Source',
workspace_id='744cc0ed-7f05-4949-9e60-2a814f90c035',
))
kapa.ai
06/04/2024, 9:53 PMkapa.ai
06/04/2024, 9:53 PMairbyte-api-python-sdk
with a JSON blob as the configuration. This example assumes you have already installed the airbyte-api-python-sdk
and have the necessary credentials and workspace ID.
### Example: Creating a Custom Data Source
First, ensure you have the airbyte-api-python-sdk
installed:
sh
pip install airbyte-api-python-sdk
Next, you can use the following Python script to create a custom data source:
python
import airbyte_api_client
from airbyte_api_client import Configuration, ApiClient
from airbyte_api_client.api import source_api
from airbyte_api_client.model.source_create_request import SourceCreateRequest
from airbyte_api_client.model.source_aha import SourceAha
# Configure API key authorization: apiKeyAuth
configuration = Configuration(
host="<http://localhost:8000/api>",
api_key={
'Authorization': 'Bearer YOUR_API_KEY'
}
)
# Enter a context with an instance of the API client
with ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = source_api.SourceApi(api_client)
# Define the source configuration
source_configuration = {
"api_key": "<value>",
"url": "<https://complicated-seat.org>"
}
# Create the source request
source_create_request = SourceCreateRequest(
name="My Source",
source_definition_id="YOUR_SOURCE_DEFINITION_ID",
workspace_id="744cc0ed-7f05-4949-9e60-2a814f90c035",
connection_configuration=source_configuration
)
try:
# Create the source
api_response = api_instance.create_source(source_create_request)
print("Source created successfully:", api_response)
except airbyte_api_client.ApiException as e:
print("Exception when calling SourceApi->create_source: %s\n" % e)
### Explanation
1. Install the SDK:
Ensure the airbyte-api-python-sdk
is installed using pip install airbyte-api-python-sdk
.
2. Configure the API Client:
Set up the API client with the appropriate host and API key.
3. Define the Source Configuration:
Create a dictionary for the source configuration, which includes the necessary parameters like api_key
and url
.
4. Create the Source Request:
Use the SourceCreateRequest
model to create a request object, including the source name, source definition ID, workspace ID, and the configuration dictionary.
5. Create the Source:
Call the create_source
method from the SourceApi
class to create the source. Handle any exceptions that may occur.
### Additional Resources
For more detailed information, you can refer to the [Airbyte API Documentation](https://airbyte-public-api-docs.s3.us-east-2.amazonaws.com/rapidoc-api-docs.html#post-/v1/sources/create).kapa.ai
06/04/2024, 9:53 PMairbyte-api-python-sdk
with a JSON blob as the configuration. This example assumes you have already installed the airbyte-api-python-sdk
and have the necessary credentials and workspace ID. ### Example: Creating a Custom Data Source First, ensure you have the airbyte-api-python-sdk
installed: sh pip install airbyte-api-python-sdk
Next, you can use the following Python script to create a custom data source: python import airbyte_api_client from airbyte_api_client import Configuration, ApiClient from airbyte_api_client.api import source_api from airbyte_api_client.model.source_create_request import SourceCreateRequest from airbyte_api_client.model.source_aha import SourceAha # Configure API key authorization: apiKeyAuth configuration = Configuration( host="<http://localhost:8000/api>", api_key={ 'Authorization': 'Bearer YOUR_API_KEY' } ) # Enter a context with an instance of the API client with ApiClient(configuration) as api_client: # Create an instance of the API class api_instance = source_api.SourceApi(api_client) # Define the source configuration source_configuration = { "api_key": "<value>", "url": "<https://complicated-seat.org>" } # Create the source request source_create_request = SourceCreateRequest( name="My Source", source_definition_id="YOUR_SOURCE_DEFINITION_ID", workspace_id="744cc0ed-7f05-4949-9e60-2a814f90c035", connection_configuration=source_configuration ) try: # Create the source api_response = api_instance.create_source(source_create_request) print("Source created successfully:", api_response) except airbyte_api_client.ApiException as e: print("Exception when calling SourceApi->create_source: %s\n" % e)
### Explanation 1. Install the SDK: Ensure the airbyte-api-python-sdk
is installed using pip install airbyte-api-python-sdk
. 2. Configure the API Client: Set up the API client with the appropriate host and API key. 3. Define the Source Configuration: Create a dictionary for the source configuration, which includes the necessary parameters like api_key
and url
. 4. Create the Source Request: Use the SourceCreateRequest
model to create a request object, including the source name, source definition ID, workspace ID, and the configuration dictionary. 5. Create the Source: Call the create_source
method from the SourceApi
class to create the source. Handle any exceptions that may occur. ### Additional Resources For more detailed information, you can refer to the [Airbyte API Documentation](https://airbyte-public-api-docs.s3.us-east-2.amazonaws.com/rapidoc-api-docs.html#post-/v1/sources/create). By following this example, you should be able to create a custom data source using the airbyte-api-python-sdk
with a JSON blob as the configuration.mike Trienis
06/04/2024, 10:12 PMkapa.ai
06/04/2024, 10:12 PMkapa.ai
06/04/2024, 10:12 PMcurl
statement to list workspaces in an Airbyte deployment. This example assumes you have the necessary access_token
for authentication. ### Example curl
Statement to List Workspaces sh curl -X GET "<YOUR_WEBAPP_URL>/api/public/v1/workspaces" \ -H "Authorization: Bearer <YOUR_ACCESS_TOKEN>" \ -H "Content-Type: application/json"
### Explanation - -X GET
: Specifies the HTTP method to use, which is GET
in this case. - <YOUR_WEBAPP_URL>
: Replace this with the URL of your Airbyte web application. - Authorization: Bearer <YOUR_ACCESS_TOKEN>
: Replace <YOUR_ACCESS_TOKEN>
with your actual access token. - Content-Type: application/json
: Sets the content type to JSON. ### Example Response You can expect a response similar to the following: json { "data": [ { "workspaceId": "b5367aab-9d68-4fea-800f-0000000000", "name": "Finance Team", "dataResidency": "auto" }, { "workspaceId": "b5367aab-9d68-4fea-800f-0000000001", "name": "Analytics Team", "dataResidency": "auto" } ] }
For more details, you can refer to the [Airbyte API Reference](https://reference.airbyte.com/reference/listworkspaces). By using this curl
statement, you can list the workspaces in your Airbyte deployment.mike Trienis
06/04/2024, 10:19 PMkapa.ai
06/04/2024, 10:19 PMkapa.ai
06/04/2024, 10:19 PM.env
File: Update the .env
file in your Airbyte installation directory to include the BASIC_AUTH_USERNAME
and BASIC_AUTH_PASSWORD
environment variables. Here’s an example: env BASIC_AUTH_USERNAME=your_username BASIC_AUTH_PASSWORD=your_password
2. Restart Airbyte: After updating the .env
file, restart your Airbyte services to apply the changes. If you are using Docker, you can do this with the following commands: sh docker-compose down docker-compose up -d
3. Access Airbyte with Basic Auth: Once Airbyte is running, you can access the Airbyte UI by navigating to <http://localhost:8000>
in your browser. You will be prompted to enter the username and password you set in the .env
file. ### Example .env
File Here’s an example of what your .env
file might look like: env # Airbyte environment variables BASIC_AUTH_USERNAME=airbyte BASIC_AUTH_PASSWORD=password
### Additional Resources For more detailed information, you can refer to the following resources: - [Airbyte Documentation on Basic Auth](https://airbyte.com/tutorials/how-to-use-airflow-and-airbyte-together#install-airbyte) By following these steps, you can enable API username/password authentication for your Airbyte instance.mike Trienis
06/04/2024, 10:20 PMkapa.ai
06/04/2024, 10:20 PMkapa.ai
06/04/2024, 10:20 PMvalues.yaml
File: Modify your values.yaml
file to include the BASIC_AUTH_USERNAME
and BASIC_AUTH_PASSWORD
environment variables. Here’s an example: yaml server: extraEnv: - name: BASIC_AUTH_USERNAME value: "your_username" - name: BASIC_AUTH_PASSWORD value: "your_password"
2. Deploy or Upgrade Airbyte with Helm: Use the Helm command to deploy or upgrade your Airbyte instance with the updated values.yaml
file. sh helm upgrade --install airbyte airbyte/airbyte -n <NAMESPACE> --values /path/to/values.yaml
Replace <NAMESPACE>
with the namespace where you want to deploy Airbyte, and /path/to/values.yaml
with the path to your values.yaml
file. ### Example values.yaml
File Here’s an example of what your values.yaml
file might look like: yaml server: extraEnv: - name: BASIC_AUTH_USERNAME value: "airbyte" - name: BASIC_AUTH_PASSWORD value: "password"
### Additional Resources For more detailed information on deploying Airbyte using Helm, you can refer to the following resources: - [Deploy Airbyte on Kubernetes using Helm | Airbyte Documentation](https://docs.airbyte.com/deploying-airbyte/on-kubernetes-via-helm#default-deployment) By following these steps, you can enable API username/password authentication for your Airbyte instance deployed using the Helm chart.mike Trienis
06/04/2024, 10:44 PMkapa.ai
06/04/2024, 10:44 PMkapa.ai
06/04/2024, 10:45 PMvalues.yaml
1. Create an Empty values.yaml
File: Inside your airbyte
directory, create an empty values.yaml
file. 2. Add Basic Enterprise Configuration: Paste the following into your newly created values.yaml
file. This is required to deploy Airbyte Self-Managed Enterprise: yaml global: edition: enterprise airbyteUrl: # e.g. <https://airbyte.company.example>
3. Enable SSO Authentication (Optional): To enable SSO authentication, add instance admin details and SSO auth details to your values.yaml
file, under global
. Here’s an example: yaml global: edition: enterprise airbyteUrl: # e.g. <https://airbyte.company.example> auth: instanceAdmin: firstName: ## First name of admin user. lastName: ## Last name of admin user. identityProvider: type: oidc secretName: airbyte-config-secrets ## Name of your Kubernetes secret. oidc: domain: ## e.g. company.example app-name: ## e.g. airbyte clientIdSecretKey: client-id clientSecretSecretKey: client-secret
### Step 2: Deploy Airbyte Using Helm 1. Add the Airbyte Helm Repository: If you haven't already, add the Airbyte Helm repository: sh helm repo add airbyte <https://airbytehq.github.io/helm-charts> helm repo update
2. Install or Upgrade Airbyte: Use the Helm command to install or upgrade your Airbyte instance with the values.yaml
file: sh helm upgrade --install airbyte airbyte/airbyte --namespace airbyte --values /path/to/values.yaml
Replace /path/to/values.yaml
with the path to your values.yaml
file. ### Step 3: Verify the Deployment 1. Check the Status: Verify that the Airbyte pods are running correctly: sh kubectl get pods -n airbyte
2. Access the Airbyte UI: Navigate to the URL specified in the airbyteUrl
field of your values.yaml
file to access the Airbyte UI. ### Additional Resources For more detailed information, you can refer to the following resources: - [Deploy Airbyte Enterprise using Kubernetes](https://docs.airbyte.com/enterprise-setup/implementation-guide) - [Configure Okta for Single Sign-On (SSO) with Airbyte Self-Managed Enterprise](https://docs.airbyte.com/access-management/sso) By following these steps, you can configure and deploy Airbyte in Enterprise mode using Helm.